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Purpose of review

The dominant view in the literature is that increased neural reactivity to high-caloric palatable foods in the
mesocorticolimbic system is a stable-specific characteristic of obese people. In this review, we argue that
this viewpoint may not be justified, and we propose that the neural response to food stimuli is dynamic,
and in synchrony with the current motivational and cognitive state of an individual. We will further motivate
why a clear mental task in the scanner is a necessity for drawing conclusions from neural activity, and why
multivariate approaches to functional MRI (fMRI) data-analysis may carry the field forward.

Recent findings

From the reviewed literature we draw the conclusions that: neural food-cue reactivity depends strongly on
cognitive factors such as the use of cognitive regulation strategies, task demands, and focus of attention;
neural activity in the mesocorticolimbic system is not proportionate to the hedonic value of presented food
stimuli; and multivariate approaches to fMRI data-analysis have shown that hedonic value can be decoded
from multivoxel patterns of neural activity.

Summary

Future research should take the dynamic nature of food-reward processing into account and take
advantage from state-of-the-art multivariate approaches to fMRI data-analysis.
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The problem of overweight and obesity has reached
pandemic proportions in the Western world and is
associated with severe negative health outcomes [1].
A dominant view in the literature assumes that, in
overweight people, the perception of high-caloric
palatable food automatically triggers their neural
reward system, leading to increased food consump-
tion [2

&

]. More specifically, it is predicted that the
neural response in key reward-related areas in the
brain (striatum, midbrain, orbitofrontal cortex,
medial prefrontal cortex, amygdala, anterior insula,
frontal operculum, hippocampus, parahippocampal
gyrus) is enhanced upon the perception of food cues
(e.g. images of food), and reduced upon the actual
consumption of food, in overweight people.

However, these predictions have not received
consistent empirical support. A meta-analysis on
the neural correlates of visual perception of food
stimuli in healthy-weight participants concluded
that the convergence over studies was moderate,
as maximally 41% of the included studies contrib-
uted to the significant clusters of activation [3].
Ziauddeen et al. reviewed functional neuroimaging
uthor(s). Published by Wolters Kluwe
ple’s neural responses to food stimuli, and drew the
provoking conclusion that ‘the pattern emerging
from studies comparing obese individuals and
binge-eaters with controls is most remarkable for
its variability and inconsistency.’ [[4]; p. 283].

In this study, we will review recent evidence
supporting the dynamic nature of food reward proc-
essing in the brain. We will argue that it may not
be justified to view the neural response to food
stimuli as a fixed characteristic of overweight versus
r Health, Inc. www.co-clinicalnutrition.com
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KEY POINTS

� The level of neural activity in the mesocorticolimbic
system of the brain is not proportionate to the hedonic
value of visually presented food stimuli.

� The mesocorticolimbic system may be better considered
a motivational saliency network instead of a reward-
network.

� Neural food-cue reactivity should not be considered a
static characteristic of overweight versus healthy-weight
people, but as in synchrony with people’s current
cognitive and motivational state (i.e. the use of
cognitive regulation strategies, task demands, and
focus of attention).

� Uncertainty about the mental process in which the
participant is engaged in during scanning complicates
the interpretation of the results of these studies.

� Multivariate approaches to fMRI data analyses have
shown that hedonic value can be decoded from
multivoxel patterns of neural activity.

Nutrition and physiological function
healthy-weight people. Instead, the neural response
to food stimuli is proposed to be in synchrony with
the current motivational and cognitive state of an
individual. In addition to reviewing evidence for
this idea, we will reflect on what actually can be
concluded from activity in reward-related brain
regions, and how the field may benefit from multi-
voxel pattern analysis (MVPA).
NEUROIMAGING OF FOOD-CUE
REACTIVITY AND CONTROL

The basic assumption in much neuroimaging work
is that visual food stimuli automatically trigger neu-
ral food-cue reactivity [5

&

]. Research aims to test
whether this neural food-cue reactivity is enhanced
in overweight and obese people, thereby assuming
that the elicited neural food-cue reactivity is a rela-
tively fixed characteristic of people. Additionally,
some neuroimaging work aims to test if the regula-
tory response to food stimuli is diminished in over-
weight as compared to healthy-weight people. This
perspective is in line with dual-process models,
which include a so-called ‘hot’ system (automatic
positive response to food stimuli) and ‘cold’ system
(a slower regulatory, inhibitory response) [5

&

].
Recently, it has been proposed that it is the balance
between the neural reward and control response
that determines self-regulatory success [6

&

].
One reason for the large inconsistency in the

obesity neuroimaging work could be that the
assumption of consistent neural responding to food
2 www.co-clinicalnutrition.com
stimuli is not warranted. The lack of consistency may
stem from the double-sided nature of high-caloric
food perception: High-caloric foods often have a high
hedonic valueand at the sametime these foodshavea
low health value because their overconsumption
contributes to weight gain. Instead of assuming that
hedonic value always takes precedence, it may be
more justifiable that hedonic value and health value
both can determine the neural response to food
stimuli, depending on people’s motivational, emo-
tional, cognitive or psychological state, or on the
situation or context [7

&&

,8
&

].
Most previous work that studied differences in

neural food-cue reactivity between overweight and
healthy-weight people used passive viewing para-
digms, in which pictures of food were presented
without a clear task for the participant. It may very
well be that participants in these studies alternated
(frequently) between focusing on health-value
(e.g. viewing the presented chocolate as a load of
calories) and hedonic value (e.g. viewing the pre-
sented chocolate as a treat). Unbeknownst to the
researcher, these alternations may occur within a
participant, and may vary between participants and
between studies, affecting neural responses, and
thereby leading to an inconsistent literature on this
topic. What is the evidence so far that the neural
responses to food stimuli are dynamic?
COGNITIVE MODULATION OF NEURAL
RESPONSES TO FOOD STIMULI

Earlier work for example showed that overweight
people’s neural response in reward-related regions of
the brain was only larger than in healthy-weight
people when the task in the scanner was focused on
taste-evaluation, but not when participants made a
free choice of food stimuli [9]. Building on this
earlier work [for partial review, see [10

&

]], several
recent functional MRI (fMRI) studies provide further
evidence for the cognitive modulation of the neural
response to food stimuli.

Two recent studies assessed the neural correlates
of cognitive regulation strategies: thought suppres-
sion and reappraisal. Miedl et al. presented choco-
late and neutral pictures, and instructed high versus
low trait chocolate cravers to either think freely or
to suppress thoughts about chocolate or a neutral
object after the picture had disappeared. Collapsed
across the think freely and suppress conditions, in
chocolate blocks, high trait chocolate cravers
thought about chocolate more often than did low
trait chocolate cravers, and this was paralleled
by higher neural activity in the striatum in high
trait chocolate cravers. Though high trait cravers
were specifically successful at chocolate thought
Volume 21 � Number 00 � Month 2018
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suppression in the suppress condition, this was not
paralleled by specific neural activity [11

&

]. Note that
these researchers, unlike with passive viewing para-
digms, had some behavioral evidence for the ongo-
ing mental process: self-reported frequency of
chocolate thoughts assessed after each block during
scanning.

As was thought suppression [11
&

], reappraisal –
thinking about negative health consequences – was
effective in reducing self-reported craving. More-
over, this strategy was associated with increased
neural activity in control-related regions of the brain
(dorsolateral, ventrolateral, and dorsomedial pre-
frontal cortex) and reduced activity in a reward-
related region of the brain (ventromedial prefrontal
cortex) [12].

Another recent study did not address cognitive
regulation, but instead focused on task demands
[13

&

]. Neural reactivity to visual food versus nonfood
stimuli was measured, with one group of participants
focusing on color and the other on edibility. For the
color focus, neural activity was specifically enhanced
in the visual cortex and insula (gustatory cortex),
whereas for the edibility focus, neural activity was
specifically enhanced in the anterior cingulate cortex
(ACC). Neural activity in the orbitofrontal cortex did
not vary significantly with task focus. These differ-
ences in neural activity between task demands likely
reflect a focus on low-level features (color) versus
high-level features (edibility).

A healthy diet is not only determined by the
type of food but also by portion size [14]. A recent
study tested the effect of attentional focus on por-
tion size decisions and its neural correlates [15]. It
was found that when participants’ attention was
focused on eating for health or pleasure, the selected
portion size was smaller, whereas the selected por-
tion size was bigger when planning to be full until
dinner. These behavioral results were paralleled by
increased activity in the orbitofrontal cortex (plea-
sure attention focus), the left prefrontal cortex
(health attention focus), and the left insula (fullness
attention focus; trend), as observed in region of
interest analyses.

Finally, one recent study tested the effect of
attentional focus (pleasantness, calories, or inten-
sity) while actually tasting liquid food stimuli
(water, fruit juice, and tomato juice) [16]. When
tasting – pooled over all three liquids – was con-
trasted with a low-level visual baseline (fixation
cross), a large network of regions implicated in taste
and reward processing was active, which is not
surprising because of the large difference between
the act of tasting liquids versus viewing a fixation
cross. Still, effects of attention focus were observed,
in that neural activity was enhanced in several taste-
1363-1950 Copyright � 2018 The Author(s). Published by Wolters Kluwe
related and reward-related regions of the brain for
the pleasantness as compared to intensity attention
focus, and enhanced in the orbitofrontal cortex for
the intensity as compared to the health attention
focus.

Taken together, results from these recent as well
as older neuroimaging studies are very much in line
with the idea that neural activity associated with the
perception of food stimuli is not static. Instead, it
depends on cognitive factors such as the use of
cognitive regulation strategies, task demands, and
focus of attention.
FUNCTIONAL MRI NEEDS BEHAVIOR

Studies that provide evidence for the dynamic
nature of neural representations of food also under-
line the importance of a clear mental task for par-
ticipants in fMRI studies. Uncertainty about the
mental process in which the participant is engaged
in complicates the interpretation of the results of
these studies.

In most studies on food-reward processing in
obesity in which passive-viewing paradigms are
used, the argument takes the following form: It is
found that the neural response to food stimuli is
larger in obese than healthy-weight people in cer-
tain areas of the brain that have previously been
associated with reward processing. This is then
taken as evidence that therefore the presented foods
are more rewarding for obese than healthy-weight
people. However, this form of reasoning is not par-
ticularly strong and fully depends on reverse infer-
ence: ‘to infer the likelihood of a particular mental
process M from a pattern of brain activity A (P(MjA))’
[[17], p. 693]. As Poldrack explains, the probability
that a certain mental process is engaged given cer-
tain neural activity (P(MjA)) depends both on the
base rate of the observed neural activity and on the
probability that the mental process is indeed
engaged (P(M)). P(MjA) becomes less likely if the
base rate of A is high, that is, if activity in a certain
brain area is related to many different mental pro-
cesses, and/or if P(M) is low [17]. Note that P(M) is
unknown in a passive viewing paradigm because the
researcher does not know how the participants pro-
cess the presented food stimuli, and the mental
process may fluctuate over the course of the scan-
ning session.

Based on an online database (http://www.neur-
osynth.org), Poldrack [17] concludes that, among
many others brain regions, certain frontal regions
(ACC, anterior insula) have high base rates, and
these areas are often included in the reward/con-
trol-system of the brain. These high base rates, com-
bined with uncertainty about the mental process the
r Health, Inc. www.co-clinicalnutrition.com 3

http://www.neurosynth.org/
http://www.neurosynth.org/


CE: Alpana; MCO/210610; Total nos of Pages: 5;

MCO 210610

Nutrition and physiological function
participant is engaged in with passive viewing para-
digms, shed doubt on the strength of reverse infer-
ence here, and limits the conclusions that can be
drawn from these studies.

Recent findings from our laboratory further
strengthen this argument (Franssen S, Jansen A,
van den Hurk J, et al. Power of mind: attentional
focus rather than food palatability dominates neural
responding to visual food stimuli, submitted for
publication). In this study, we tried to control the
mental process of our participants as much as possi-
ble. We either had overweight participants perform
a fast-paced hedonic 1-back task (i.e. indicate if the
presented food is more or less palatable than the
previous one; hedonic attentional focus) or a fast-
paced neutral 1-back task (i.e. indicate if the pre-
sented food contains more or fewer colors than the
previous one; neutral attentional focus). In the task,
we presented individually tailored highly palatable
and highly unpalatable high-caloric food stimuli.
Strikingly, the level of neural activity in the meso-
corticolimbic system was not significantly different
for highly palatable versus highly unpalatable food
stimuli, not even when participants focused on the
taste. Instead, the neural response in several brain
regions included in this system was larger with the
hedonic attentional focus than with the neutral
attentional focus, independent of the palatability
of the presented food stimuli. So, neural activity was
different between attentional foci while the exact
same visual food stimuli were presented. These sug-
gest that the level of neural activity in these regions
may reflect motivational salience instead of being
proportionate to the hedonic value of presented
stimuli. Note that these findings align well with
recent research that showed that the medial and
lateral orbitofrontal cortex were largely equally
responsive to stimuli representing positive and neg-
ative affect [18].

Future research addressing obese – healthy-
weight differences in neural responding to high-
caloric food stimuli may be well advised to take this
into account, and make sure to use a paradigm that
provides tight control over the mental process the
participant is engaged in while being scanned. This
allows for a better interpretation of neural findings,
and may contribute to more consistency in this
literature.
DECODING MENTAL STATES

Most neuroimaging work on neural correlates of
food reward processing used a mass-univariate
approach to fMRI data-analysis. Although these
univariate analyses of fMRI data are only informa-
tive regarding the involvement of certain brain
4 www.co-clinicalnutrition.com
regions in certain tasks, MVPA of fMRI data decodes
representational content in the brain [19

&

]. So, two
types of food can involve a brain region to a similar
degree (result from conventional mass-univariate
analyses), but can elicit very different multivoxel
patterns of activity within that brain region (result
from MVPA of fMRI data).

Earlier work showed that although the level of
activity elicited by positive and negative stimuli was
the same in the orbitofrontal cortex, stimulus pleas-
antness could be decoded from multivoxel patterns
of neural activity [18]. Fitting nicely with these
earlier findings, Suzuki and colleagues showed that
food value could be decoded from multivoxel pat-
terns in the orbitofrontal cortex [20

&&

]. Also in line
with these findings are results from a recent study
from our laboratory (Franssen S, Jansen A, van den
Hurk J, et al. Power of mind: attentional focus rather
than food palatability dominates neural responding
to visual food stimuli, submitted for publication).
Here we showed that food palatability could be
specifically decoded from multivoxel patterns of
neural activity when participants’ attention focus
was hedonic during task performance. So, positive
versus negative affect and palatable versus unpalat-
able food stimuli can be distinguished based on
neural activity, but only when using a multivariate
approach to data analysis.
CONCLUSION

The main conclusions of this study include: neural
food-cue reactivity should not be considered a static
characteristic of overweight versus healthy-weight
people, but as in synchrony with people’s current
cognitive and motivational state; the level of activ-
ity in brain regions that are typically implicated in
reward processing is not proportionate to the
hedonic value of presented food stimuli, and there-
fore it may be more appropriate to view this brain
circuit as a motivational saliency network; multivar-
iate approaches to fMRI data analyses have been
insightful and have shown that hedonic value
can be decoded from multivoxel patterns of neural
activity.

These conclusions fit well with the idea of value-
based choice: ‘selecting from a set of options based
on their relative subjective value’ [[7

&&

], p. 423]. So,
the idea is that people integrate various aspects of an
option (e.g., taste, healthfulness, costs, social cir-
cumstances, etc.) for determining choice, without
automatically prioritizing hedonic aspects. In this
model, attentional focus is given an important role,
as it is considered a gatekeeper of which options are
available for choice. This model is a departure from
dual-systems models, which typically posit a ‘hot’
Volume 21 � Number 00 � Month 2018
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impulsive system and a ‘cold’ reflective control sys-
tem. Note that several other authors have recently
also casted doubt on the validity of dual-process
models [21

&

,22
&

].
The recent finding that the level of neural activ-

ity in the mesocorticolimbic system of the brain is
not proportionate to the hedonic value of visually
presented food stimuli is not trivial (Franssen S,
Jansen A, van den Hurk J, et al. Power of mind:
attentional focus rather than food palatability dom-
inates neural responding to visual food stimuli,
submitted for publication). If studies report
increased neural activity in response to high caloric
food stimuli, this could be because of both positive
and negative valence. Based on the observed neural
activity, it cannot be concluded that the hedonic
value of the presented stimuli is higher. So, this
brain system could maybe better be viewed as a
motivational saliency system. Finally, future
research could profit from relatively recent multi-
variate approaches to data-analysis, and from brain
stimulation and neurofeedback techniques, to fur-
ther our understanding of neural mechanisms of
obesity [19

&

,23
&

,24
&

].
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